If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=83
We move all terms to the left:
3x^2-(83)=0
a = 3; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·3·(-83)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{249}}{2*3}=\frac{0-2\sqrt{249}}{6} =-\frac{2\sqrt{249}}{6} =-\frac{\sqrt{249}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{249}}{2*3}=\frac{0+2\sqrt{249}}{6} =\frac{2\sqrt{249}}{6} =\frac{\sqrt{249}}{3} $
| 2(4x×3)=10x-2 | | 3/n=24/25.6 | | 4y=7+15 | | 7+8y=34 | | 3q/4=15 | | x^2+14x-144=0 | | 18m–16m=30 | | 3a+2=10-a | | 5(n)=n-5(n-1)+5 | | 14=8+z(2) | | x+80+72°+x+50=180° | | x+80+72°+x+50=180 | | 16x^2-50x+25=0 | | 100=x-(x*0,6) | | 5(3y-2)=35* | | n–1=12 | | 7,5*10^5=(9*10^9*(3.6*10^-6)*0,5)/(x^2-0,0625) | | 7,5*10^5=(9*10^9*(3.6*10^-6))/(x^2-0,0625) | | X+5(x-1)=5(2-x) | | 153*5+x=800 | | 6d(d-3)=25 | | 5x+0.2x=800 | | X^3+7x-9=0 | | (D²+5D+4)(2D²+5D+2)y=0 | | (D5+5D+4)(2D2+5D+2)y=0 | | (0.125)^x=√0.5 | | 24x+157=-2x | | 24x+157=-2 | | ((x-5)÷3)-(x-6)=3(x+7)-3 | | 3x+4x=9-12 | | 1(3.8r-8.2)=50.6 | | x/42x+5=64 |